

C-H Activation: Fundamentals and Recent Developments

ISOC 11th INTERNATIONAL SCHOOL OF ORGANOMETALLIC CHEMISTRY

Giovanni Poli giovanni.poli@upmc.fr

omium	manganese	iron	cobalt	nickel	copper	zir
24	25	26	27	28	29	3
Cr	Mn	Fe	Со	Ni	Cu	Z
.9961	54.93805	55.845	58.9332	58.6934	63.546	65.4
/bdenum	technetium	ruthenium	rhodium	palladium	silver	cadn
42	43	44	45	46	47	4
٥N	Тс	Ru	Rh	Pd	Ag	С
5.94	[98]	101.07	102.9055	106.42	107.8682	112.
ngsten	rhenium	osmium	iridium	platinum	gold	mere
74	75	76	77	78	79	8
W	Re	Os	lr	Pt	Au	H
83.84	186.207	190.23	192.217	195.078	196.96655	200
oorgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	unun
106	107	108	109	110	111	11

- Focus on the Transformation
- * Historical Background
- * Overview of Mechanisms
- Selection of Specific Examples

San Benedetto del Tronto, 2-6 September 2017

Moléculaire

ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, 2004, 1-43

Organometallic C-H Bond Activation: An Introduction

Alan S. Goldman¹ and Karen I. Goldberg²

The carbon-hydrogen bond is the un-functional group. Its unique position in organic chemistry is well illustrated by the standard representation of organic molecules: the presence of C-H bonds is indicated simply by the absence of any other bond. This "invisibility" of C-H bonds reflects both their ubiquitous nature and their lack of reactivity. With these characteristics in mind it is clear that if the ability to selectively functionalize C-H bonds were well developed, it could potentially constitute the most broadly applicable and powerful class of transformations in organic synthesis. Realization of such potential could revolutionize the synthesis of organic molecules ranging in complexity from methanol to the most elaborate natural or unnatural products.

Multi-step Syntheses and C-H Activation /Functionalization

"Liberating chemistry from the tyranny of functional groups"... Of course, reactive groups have to be tolerated

Feng, Y.; Chen, G. *Angew. Chem., Int. Ed.,* **2010**, *49*, 958 Breslow, R.; Yang, J.; Yan, J. *Tetrahedron* **2002**, 58, 653

Adapted from: Caballero, A.; Perez, P. J. Chem. Soc. Rev. 2013, 42, 8809

omium	manganese	iron	cobalt	nickel	copper	zin	
24	25	26	27	28	29	31	
Cr	Mn	Fe	Со	Ni	Cu	Z	
.9961	54.93805	55.845	58.9332	58.6934	63.546	65.4	
/bdenum	technetium	ruthenium	rhodium	palladium	silver	cadm	
42	43	44	45	46	47	4:	
Лο	Тс	Ru	Rh	Pd	Ag	C	
5.94	[98]	101.07	102.9055	106.42	107.8682	112.	
ngsten	rhenium	osmium	iridium	platinum	gold	mere	
74	75	76	77	78	79	81	
W	Re	Os	lr	Pt	Au	H	
33.84	186.207	190.23	192.217	195.078	196.96655	200	
orgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	unun	
106	107	108	109	110	111	11	

- Focus on the Transformation
- * Historical Background
- * Overview of Mechanisms
- Selection of Specific Examples

Hofmann-Löffler-Freytag (HLF) Reaction

highly reactive intermediates.....and structural proximity 1. H_2SO_4 / Δ 2. neutralization photochemical decomposition of **N-haloamines** Br δ-coneceine August Wilhelm von Hofmann Me Br 1. H_2SO_4 / Δ (or h_v) 2. neutralization Me nicotine Me Me Me HN CI-₄Me Me Me H₂SO₄ Me NCS hv Me Н Me Me Ĥ Ĥ Ĥ Ĥ Н Ĥ Me₂N Me₂N Me₂N Ĥ Ĥ dihydroconessine (a) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1883, 16, 558; Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1885, 18, 5.

- (b) Löffler, K.; Freytag, C. Ber. Dtsch. Chem. Ges. **1909**, 42, 3427.
- (c) Corey, E. J.; Hertler, W. R. J. Am. Chem. Soc. 1958, 80, 2903.
- (d) Buchschacher, P.; Kalvoda, J.; Arigoni, D.; Jeger, O. J. Am. Chem. Soc. 1958, 80, 2905.
- (e) Corey, E. J.; Hertler, W. R. J. Am. Chem. Soc. 1959, 81, 5209.

imie

éculaire

Pioneering Electrophilic C-H Metalations of Arenes

Volhard, J. Justus Liebigs Ann Chem . 1892, 267, 172.

Dimroth, O. Ber. Dtsch. Chem. Ges. 1898, 31, 2154; 1899, 32, 758; 1902, 35, 2032 and 2853.

Kharasch, M. S.; Isbell, H. S. J.Am. Chem. Soc. 1931, 53, 3053.

Goldshleger, N. F.; Eskova, V. V.; Shilov, A. E.; Shteinman, A. A. Russ. J. Phys. Chem. 1972, 46, 785.

Jacob Volhard

Otto Dimroth

Morris Kharasch

Chimie Moléculaire

Pioneering Nucleophilic Metalations of Arenes

First C-H ortho-metalation H $N^{-}N$ N $N^{-}N$ $N^{-}N$

Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544

Chatt, J.; Davidson, J. M.; J. Chem. Soc. (A) 1965, 843.

Green, M. L. H.; Knowles, P. J. J. Chem. Soc., Chem. Comm. 1970, 1677.

Other Important Pioneering Steps Forward

11th INTERNATIONAL SCHOOL OF ORGANOMETALLIC CHEMISTRY San Benedetto del Tronto, 2-6 September 2017

Julaire

omium	manganese	iron	cobalt	nickel	copper	zin
24	25	26	27	28	29	31
Cr	Mn	Fe	Со	Ni	Cu	Z
.9961	54.93805	55.845	58.9332	58.6934	63.546	65.4
/bdenum	technetium	ruthenium	rhodium	palladium	silver	cadm
42	43	44	45	46	47	4:
Лο	Тс	Ru	Rh	Pd	Ag	C
5.94	[98]	101.07	102.9055	106.42	107.8682	112.
ngsten	rhenium	osmium	iridium	platinum	gold	mere
74	75	76	77	78	79	81
W	Re	Os	lr	Pt	Au	H
33.84	186.207	190.23	192.217	195.078	196.96655	200
orgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	unun
106	107	108	109	110	111	11

- Focus on the Transformation
- * Historical Background
- * Overview of Mechanisms
- Selection of Specific Examples

Overview of Mechanisms

We can mechanistically classify the metal-catalyzed C-H activation / functionalization processes into **two main classes**.

1. Insertion of a C-H bond into the ligand of a transition metal (TM) complex

outer sphere

2. Coordination of the C-H bond to a metal vacant site to create an organometallic complex. The hydrocarbyl species stays in the inner-sphere during the C-H cleavage event.

inner sphere

Inner Sphere: Nucleophilic vs Electrophilic Character

11th INTERNATIONAL SCHOOL OF ORGANOMETALLIC CHEMISTRY San Benedetto del Tronto, 2-6 September 2017

nimie

éculaire

Chimie Moléculaire

The Isohypsic Electrophilic Mechanisms

Ambiphilic metal-ligand activation (AMLA) Concerted metalation deprotonation (CMD) Internal electrophilic substitution (IES)

- (a) Fagnou, K. et al. J. Am. Chem. Soc. 2008, 130, 10848; (b) J. Org. Chem. 2012, 77, 658; (c) Chem. Lett. 2010, 39, 1118.
- (b) Davies, D. L.; Macgregor, S. et al. Dalton Trans. 2009, 5820.

nimie

oléculaire

(c) Oxgaard, J.; Goddard III, W. A. Organometallics 2007, 26, 1565.

	coupling type	redox	reaction type, typical example		
a)	$C X + X - C \xrightarrow{-X_2} C - C$	reductive	Ulmann type coupling		
b)	C→M + X→C →C→C	isohypsic	classical cross couplings		
C)	С-н + х-С <u>-нх</u> С-С	isohypsic	Sonogashira, Mizoroki-Heck, Ohta		
d)	C-H + H-C -H₂→ C+C	oxidative	cross dehydrogenative coupling (dual C-H)		
e)	C-H + Nu-H -H₂ Nu+C	oxidative	C-H nucleofunctionalization		
f)	C≠C+H + 2 Nu-H -H₂→ Nu-C+C+Nu	oxidative	alkene 1,2-nucleofunctionalization		

PdX₂-cat. Oxidative Transformations

Z and QX₂: 2e⁻ sacrificial oxidants; DG: directing group

Dehydrometalation / Hydrometalation

Thorn, D. L. Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2079

Transition metal alkyl complexes bearing a β -H atom that can adopt syncoplanar position with respect to the metal undergo easily β -hydride elimination (dehydrometalation).

The metal must have a vacant coordination site (empty orbital) that can interact with the H atom of the alkyl ligand. So, a dehydrometalation step can be regarded as a special case of inner-sphere intramolecular C-H activation.

d⁰ metal complexes (*i.e.* Ag⁺, Hg ²⁺) lacking the possibility to participate in d-orbital bonding are normally stable to β -hydride elimination:

Liron, F.; Oble, J.; Lorion, M. M.; Poli, G. *Eur. J. Org. Chem.* **2014**, 5863 **Microreview** Lorion, M. M.; Nahra, F.; Ly, V.-L.; Mealli, C.; Messaoudi, A.; Liron, F.; Oble, J.; Poli, G. *Chem Today* **2014**, 32, 30 Lorion, M. M.; Oble, J.; Poli, G. *Pure Appl. Chem.* **2016**, *88*, 381.

Chimie

oléculaire

omium	manganese	iron	cobalt	nickel	copper	zin	
24	25	26	27	28	29	31	
Cr	Mn	Fe	Со	Ni	Cu	Z	
.9961	54.93805	55.845	58.9332	58.6934	63.546	65.4	
/bdenum	technetium	ruthenium	rhodium	palladium	silver	cadm	
42	43	44	45	46	47	4:	
Лο	Тс	Ru	Rh	Pd	Ag	C	
5.94	[98]	101.07	102.9055	106.42	107.8682	112.	
ngsten	rhenium	osmium	iridium	platinum	gold	mere	
74	75	76	77	78	79	81	
W	Re	Os	lr	Pt	Au	H	
33.84	186.207	190.23	192.217	195.078	196.96655	200	
orgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	unun	
106	107	108	109	110	111	11	

- Focus on the Transformation
- * Historical Background
- * Overview of Mechanisms
- Selection of Specific Examples

Inner Sphere: C-H Functionalization (nucleophilic reactivity)

- Low temperature IR flash kinetic spectroscopy
- C-H selectivity: $sp^2 > 1^{\circ} sp^3$ (Rh easier than Ir)
- The hydrido(alkyl)metal complex is unproductive
- The oxidative addition is thermodynamically favored.
- Rh: thermodynamic control. Ir: kinetic control

(a) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352
(b) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723
(c) Jones, W. D.; Feher, F. J. Organometallics 1983, 2, 562

Electrophilic Paths: The Pivotal Role of C-Pd-X

Oxidative Addition Triggered Arylations

coupling type c, path (a + III)

Electrophilic reactivity

aryl/aryl

(a) Nakamura, N.; Tajima, Y.; Sakai, K. Heterocycles 1982, 17, 235

(b) Akita, Y. Ohta, A. Heterocycles 1982, 19, 329

Chimie

oléculaire

(c) Fagnou, K. et al. J. Am. Chem. Soc. 2006, 128, 16496

Oxidative Addition Triggered Arylations

Cross Dehydrogenative Couplings (CDC)

Fujiwara-Moritani reaction

aryl/vinyl, coupling type d, path (d + l)

Electrophilic reactivity

aryl/vinyl

Oxidative Pd(II)/Pd(IV) Sequences

coupling type e, path (d + V + VII)

- (a) Fahey, D. R. J. Organometal. Chem. 1971, 27, 283.
- (b) Eberson, L. J. et al. Liebigs Ann. Chem. **1977**, 233; Stock, L. M. et al. J. Org. Chem. **1981**, 46, 1759. Crabtree R. H. et al. J. Mol. Catal. A: Chem. **1996**, 108, 35
- (c) Sanford, M. S. et al. J. Am. Chem. Soc. 2004, 126, 2300.

C-H activation at Pd(II) vs Pd(IV)

coupling type g, path (e + V + VI)

alkene 1,2-aminoalkylation

(a) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
(b) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.

Substrate Control: Directed Aromatic ortho Activations

Two mechanistically different strategies

Seminal papers on directed ortho activation: (a) S. Murahashi J. Am. Chem. Soc. **1955**, 77 (1955) 6403-6404; (b) J. P. Kleiman, M. Dubeck, J. Am. Chem. Soc. **1963**, 85, 1544-1545.

Nucleophilic Directed C-H Activation: The Murai Reaction UPMC

Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529.

Directed Fujiwara-Moritani

Ortho-metalation Ru(II)

Electrophilic reactivity

Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579

Different directed Pd-catalyzed ortho functionalization

Daugulis, O. et al. Angew. Chem., Int. Ed. 2005, 44, 4046.

Pd(II)/Pd(0)

imie

éculaire

Selectivity 1° > 2°

Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890

C-H Borylation

Iverson, C. N.; Smith III, M. R. J. Am. Chem. Soc. 1999, 121, 7696.

Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. 1999, 38, 3391.

Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.

To Read More On This Topic...

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical 426 (2017) 275-296

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Metal-catalyzed C-H activation/functionalization: The fundamentals

Fares Roudesly, Julie Oble*, Giovanni Poli*

Sorbonne Universités, UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Case 229, 4 Place Jussieu, 75252 Paris Cedex 05, France

ARTICLE INFO

Article history:

Received 27 May 2016 Received in revised form 22 June 2016 Accepted 23 June 2016 Available online 4 September 2016

Dedicated to Professor Georgiy B. Shul'pin on the occasion of his 70th birthday.

Keywords:

C—H activation C—H functionalization C—C bond formation C-heteroatom bond formation Mechanistic study

ABSTRACT

An isolated C—H bond in a molecule has a very low reactivity owing to the large kinetic barrier associated to the C—H bond cleavage and the apolar nature of this bond. For this reason, the selective reactivity of such a non-functional group is under active study since several decades and is still regarded as the Holy Grail in chemistry. Metal-catalyzed C—H activation/functionalization chemistry allows the step-economical and original construction of C—C as well as C—O and C—N bonds starting from hydrocarbons (or hydrocarbon fragments) without the need of prior non catalytic oxidation steps. Furthermore, it can be of utmost importance in the domain of multistep syntheses, and also in transformations of societal significance such as the conversion of methane into methanol. This tutorial review addresses to students and researchers who would like to become acquainted with this fascinating topic. After a brief historical introduction, the main mechanistic fundaments of metal-catalyzed C—H activation are exposed. Then, a selection of seminal advances and conceptual breakthroughs are presented.

© 2016 Elsevier B.V. All rights reserved.

Roudesly, F; Oble, J; Poli, G. J. Mol. Cat. A. Chem. 2017, 426, 275

The Jeffery ligandless conditions

Gittins, D. I.; Caruso, F. *Angew. Chem. Int. Ed.*, **2001**, *40*, 3001 Astruc, D. *Inorg. Chem.*, **2007**, *46*, 1884 Cookson, *Platinum Metals Rev.*, **2012**, *56*, 83 Carrow, B. P.; Hartwig, J. F. *J. Am. Chem. Soc.* **2010**, *132*, 79

Homeopathic amounts of catalyst

de Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.; Henderickx, H. J. W.; de Vries, J. G. *Org. Lett.*, **2003**, *5*, 3285. Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.; Sánchez, G.; López, G.; Serrano, J. L.; García L.; Pérez, E. *Dalton Trans.*, **2004**, 3970.

Polymer supports in catalysis

From heterogeneous to quasi homogeneous catalysis

- nonlinear kinetic behavior
- unequal distribution and/or access to the chemical reaction
- solvation problems associated with the nature of the support
- ✤ synthetic difficulties in transferring standard organic reactions to the solid phase

Chem. Rev. 2009, 109, 302.; ACS Macro Lett. 2014, 3, 260.

Functionalised microgels to stabilise metal colloids

San Benedetto del Tronto, 2-6 September 2017

oléculaire

Smart well-defined catalytic nanoreactors

Sanson, N. ; Rieger, J. Polym. Chem., 2010, 1, 965-977

Hybrid core-shell nanogels

- Globular shaped cross-linked polymers in the range of 10-500 nm
- > Different polymers in the shell and the core
- Swell in the presence of good solvents
- Confine metallic species (recycling, nanoreactors)

Macromol. Rapid Commun. **2008**, *29*, 1965. Macromol. Rapid Commun. **2015**, *36*, 1458. Chem. Rev. **2015**, *115*, 9745.

- Synthesize Core-Shell nanogels with metal coordinating monomers
- Functionalisation with metallic species
- Study the catalytic properties of the hybrid materials
- Understanding system robustness and recyclability

- Mechanism superimposed on a conventional free radical polymerization
- > Predictable size and narrow M_n distribution (chain length and molar mass distribution depend directly on the monomer/control agent ratio).
- Large range of monomers: (meth)acrylates, (meth)acrylamides, vinyl, ...
- Fast initiation, absence of termination...
- Polymer architecture (alternate or gradient copolymers; one or more blocks; ...)

Rizzardo, E. Thang, S. H. *Macromolecules*, **1998**, *31*, 5559. Matyjaszewski K. et al. *Materialstoday* **2005**, *8*, 26; *Prog. Polym. Sci.* **2007**, *32*, 93.

Reversible addition-fragmentation chain-transfer polym. UPMC

Hawker, C. J.; et al. J. Am. Chem. Soc 2007, 129, 14493

Nanogel synthesis

Nanogel synthesis

Nanogel characterization

Functionalisation with Pd nanoparticles

Characterization of PdNP@NG

loléculaire

San Benedetto del Tronto, 2-6 September 2017

ρ

Moléculaire

San Benedetto del Tronto, 2-6 September 2017

Hybrid Nanogel Recycling

PdNP@NG Recycling

After 4 cycles of catalysis

Ostwald ripening

	ICP-MS	XPS	
PdNP@NG	Pd cont (wt%)	%Pd(II)	%Pd(0)
t _o	0.95	24	76
After 4 cycles	0.22	93	7

Pd leaching out of the NG			
	Pd content		
Phase	ppm	% total Pd	
Organic	76.6	19	
Aqueous	0.04	2	

Pd leaching test #1

Moléculaire

San Benedetto del Tronto, 2-6 September 2017

Pd leaching test #2

Macromolecular substrate

R	yield(%)
Bu-n	60
[CH ₂ CH ₂] _n OMe	60

PEG-methacrylate: *M*_n=1.1 kg/mol

Proposed mechanism for the PdNP@NG cat Mizoroki-Heck rxn

San Benedetto del Tronto, 2-6 September 2017

Well defined core-shell nanogels **NG** have been synthesised and characterised

RAFT aqueous dispersion polymerisation process

Pd⁰ NP were incorporated (~1.3 wt%) PdNP@NG

Long-term stability even under air and moisture

Nanogel Pd is an active catalyst in the Mizoroki-Heck reaction in 0.1 wt%

Substrates: bromo- and iodo-arenes (accumulated TOF: 2880)

The hybrid materials can be recycled up to three cycles

Leaching of Pd lead to the formation of Pd(II)

Pontes da Costa, A.; Rosa Nunes, D.; Tharaud, M.; Oble, J.; Poli, G.; Rieger, J. ChemCatChem, 2017, 9, 2167 -2175

From agricultural waste to furfural

From furfural to bulk chemicals

D

Moléculaire

San Benedetto del Tronto, 2-6 September 2017

- ✓ Formyl function ☑
- \checkmark Aromatic nucleus \blacksquare
- Three different aromatic C-H bonds \square \square

The challenge: C3 alkylation of furfural via catalytic directed C-H activation

Related "cat C-H" activation precedents

Murai, S.; Kakiuchi, F.; Chatani N. et al. Nature 1993, 366, 529

From imino coordination to amino-imino chelation

Amino-imines as chlelating groups

Scope with vinylsilanes

Scope with styrenes

Scope from HMF derived substrates

Entry	Imine	R'	R"	t(h)	Yield (%)	
					chromat.	w/t chromat
1	DEAEIF	TBDMS	Si(OEt) ₃	5	57	
2	PEIF	TBDMS	Si(OEt) ₃	5		44
3	DEAEIF	TBDMS	Si(OMe) ₃	16		59
4	DEAEIF	TBDMS	SiPh ₃	17	62	66
5	DEAEIF	Ac	Si(OEt) ₃	5	NR	
6	DEAEIF	Bn	Si(OEt) ₃	5	20	
7	DEAEIF	THP	Si(OEt) ₃	5	NR	
8	DEAEIF	Tr	Si(OEt) ₃	17	17	

Scope: C5 substituted furfurals

Entry	R	R'	t(h)	yield (%)	lin/br
9	CH ₃	Si(OEt) ₃	5	56 (64)	
10	CH ₃	SiMe ₂ (OEt)	5	40 (65)	
11	CH ₃	Ph	17	38	88:12
12	Ph	Si(OEt) ₃	16	20	

Energetic profile 1

Energetic profile 2

- ✓ First example of directed olefin insertion at C3 of furfurals (Murai reaction)
- ✓ Use of a removable iminoamine N,N'-bidentate directing group is the key to success
- DFT calculations provided a plausible catalytic cycle to put forward.
- Breakthroughs in the valorization of lignocellulosic biomass substrates

Pezzetta, C.; Veiros, L. F.; Oble, J.; Poli, G. Chem. Eur., 2017, 23, 8385-8389

