

XI International School of Organometallic Chemistry From Theory to Applications

San Benedetto del Tronto, 2-6 September 2017

# Photoactive nanoscale devices and machines

#### Alberto Credi

**Center for Light Activated Nanostructures** Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, and Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy

alberto.credi@unibo.it

#### www.credi-group.it





ALMA MATER STUDIORUM Università di Bologna



Consiglio Nazionale delle Ricerche













## Why miniaturization?



**ENIAC: the first electronic computer (1944)** 

#### Integrated microprocessor (today)



*Weigth:* ca. 2 kg *Power consumption:* ca. 60 W (CPU)

> *N. transistors:* 1.4 billions\* *Elements size (min):* 25 nm\*

\* Intel i7 quad core processor (22-nm lithography), released Q3 2013. See http:\\ark.intel.com

*Weigth:* ca. 30 t *N. tubes:* 19000 *Power consumption:* 200 kW

#### Naturally occurring molecular machines



Cells have hundreds of different types of molecular motors, each specialized for a particular function. Many biological motor-like proteins have been discovered and characterized in recent years.

## **Artificial molecular devices**



V. Balzani, A. Credi, M. Venturi, PNAS 2002, 99, 4814; Chem. Eur. J. 2002, 8, 5524

# Complex synthetic structures







#### Artificial molecular devices: the role of light





#### **Artificial molecular devices**

#### • Devices for signal (information) processing

Wires, plug/socket devices, electrical extension cable systems, antennas, sensors, switches, logic gates,...

#### Devices for harvesting and converting light energy

Light harvesting antennas, wires, charge-separation devices, ...

#### Mechanical devices (molecular machines)

Tweezers, shuttles, muscles, valves, rotary motors, ...

## **Artificial molecular devices**

#### Information processing devices

A.P. de Silva, S. Uchiyama, Nature Nanotech. 2007, 2, 399

K. Szacilowski, Chem. Rev. 2008, 108, 3481

V. Balzani, A. Credi, M. Venturi, Chem. Eur. J. 2008, 14, 26

A. P. de Silva, *Molecular Logic-based Computation*, RSC Publishing, Cambridge, **2012**.

#### **Mechanical molecular machines**

D.A. Leigh *et al.* Angew. Chem. Int. Ed. **2007**, 46, 72 Chem. Rev. **2015**, 115, 10081

S. Silvi, M. Venturi, A. Credi, *J. Mater. Chem.* **2009**, *19*, 2279; *Chem. Commun.* **2011**, *47*, 2483 (feature articles)

C. Bruns, J. F. Stoddart, *The Chemistry of the Mechanical Bond – From Molecules to Machines*, Wiley, New York, **2016** 



Wiley-VCH, Weinheim, Germany, **2008** 

# Information processing devices based on transition metal complexes

#### An acid-base controlled luminescent switch



Ru







λ (nm)

With Ed Constable, University of Basel

Inorg. Chim. Acta 2007, 360, 1102



λ (nm)

| $In_1 = H^+$ | In <sub>1</sub> | In <sub>2</sub> | Out <sub>740</sub> | Out <sub>740</sub> | Out <sub>630</sub> |
|--------------|-----------------|-----------------|--------------------|--------------------|--------------------|
| $In_2 = H^+$ | 0               | 0               | 0                  | 0                  | 1                  |
| Out = hv     | 0               | 1               | 0                  | 1                  | 0                  |
|              | 1               | 0               | 0                  | 1                  | 0                  |
|              | 1               | 1               | 1                  | 1                  | 1                  |

AND OR XNOR

# Photochemical operation of pH-controlled molecular switches



- compatibility of conditions
- no further chemical interactions between MS1 and MS2
- no interference of input/output signals
- correct timing of the switching processes
- $pK_a(\mathbf{N}H^+) < pK_a(\mathbf{D}_A) < pK_a(\mathbf{M}H^+)$

# The spyropyran/merocyanine photochromic system





With Françisco Raymo, University of Miami

#### **Coupled operation of the two switches**



## Photocontrol of molecular logic gate operation







740 nm

630 nm



| In <sub>1</sub> | In <sub>2</sub> | Out |
|-----------------|-----------------|-----|
| 0               | 0               | 1   |
| 0               | 1               | 0   |
| 1               | 0               | 0   |
| 1               | 1               | 1   |

# Photochemical switching of luminescence and <sup>1</sup>O<sub>2</sub> generation



Chem. Commun. 2009, 1484

# Nanoscale devices based on semiconductor nanocrystal quantum dots