Asymmetric Hydrogenation with Chiral Iridium Catalysts

Andreas Pfaltz

Department of Chemistry, University of Basel

ENANTIOSELECTIVE HYDROGENATION

Asymmetric hydrogenation of functionalized olefins

Achiwa's "Respective Control Concept"

Synlett 1992, 169

 P_{trans} and P_{cis} have different steric and electronic interactions with the substrate

P_{trans} and P_{cis} have different effects on the enantioselectivity and rate

P_{trans} and P_{cis} groups must perform different functions and, therefore, **should be optimized individually**.

Phosphinooxazolines (PHOX ligands)

P. von Matt, A. Pfaltz Angew. Chem. Int. Ed. **1993**, *32*, 566

J. Sprinz, G. Helmchen *Tetrahedron. Lett.* **1993**, *34*, 1769

G. J. Dawson, C. G. Frost, J. M. J. Williams, S. J. Coote, T*etrahedron. Lett.* **1993**, *34*, 3149

Ir(COD)Cl]₂, CH₂Cl₂, reflux
NH₄PF₆, H₂O / CH₂Cl₂

3) crystallization (CH_2Cl_2 / Et_2O)

X-RAY ANALYSIS

Ludwig Macko, Prof. Margareta Zehnder (University of Basel)

Olefins without coordinating groups

Buchwald

High yield and ee 5-8 mol% catalyst low TOF (1-2 h⁻¹)

Broene & Buchwald, JACS 1993, 115, 12569

Initial Experiments

PATRICK SCHNIDER, ANDREW LIGHTFOOT

Preparation and X-ray analysis of the trinuclear complex [$\{Ir(PHOX)H_2\}_3H$] [PF₆]₂

Effect of the anion

Andrew Lightfoot

KINETIC STUDIES

0.01-1 mol% catalyst

5-50 bar H_2 , CH_2Cl_2 , 4-25 °C

catalyst

SEBASTIAN SMIDT

<u>Anions</u>: BF_4^- , PF_6^- , $CF_3SO_3^-$

 BAr_F

F

Ingo Krossing (Univ. of Karlsruhe)

Catalysts with Six Different Anions

 $[AI\{OC(CF_3)_3\}_4]^- > BAr_F^- > [B(C_6F_5)_4]^- > PF_6^- >> BF_4^- > CF_3SO_3^-$

Hydrogenation vs. catalyst deactivation: influence of the anion

Variation of the Catalyst Structure

Variation of the Phosphinooxazoline Structure

Pyridine-Phosphinite Ligands

2: 99.9% ee

1:99.5% ee

2:98% ee

2:95% ee

1:>99% ee

1:98% ee

Synthesis of Bicyclic Pyridine-Phosphinite Ligands

Practical chromatography-free kinetic resolution with lipase

Synthesis **2009**, 3654

Contributions of other groups

NHC-Pyridine Ligands

Andreas Schumacher

Asymmetric hydrogenation of furans and benzofurans

Chem. Eur. J. 2015, 21, 1482.

Stefan Kaiser, Larissa Pauli

Asymmetric hydrogenation of Benzothiophene dioxides

Paolo Tosatti, A. P., Angew. Chem. Int. Ed. 2017, 56, 4579

Asymmetric hydrogenation of indoles

Alejandro Baeza

Hydrogenation of Alkenylboranes

Rh(P^P): J. Morken, JACS 2004, 126, 15338, Org. Lett. 2006, 8, 2413. Ir(P^N): P. Andersson, Chem. Commun. 2009, 5996.

Adnan Ganic, A. P., Chem. Eur. J. 2012, 18, 6724

Tetrasubstituted Olefins

Eva Neumann, Marcus Schrems

lr-4

Ir

Marcus Schrems

cytotoxic activity)

(*R*,*R*,*R*)-Tocopherol (Vitamin E)

S. Bell, B. Wüstenberg, S. Kaiser, F. Menges, T. Netscher, A. P. Science 2006, 311, 642.

Enantio- and diastereoselective hydrogenation of farnesol

Org. Lett. 2005, 7, 4803.

Aie Wang

Aie Wang

Mechanistic Studies

Proposed catalytic cycles

P. Brandt, P. G. Andersson *et al*, *Chem. Eur. J.* **2003**, *9*, 339.K. Burgess, M. B. Hall *et al.*, *JACS* **2004**, *126*, 16688.

Activation of the precatalyst

Stefan Gruber

Rapid enantioface exchange of Ir dihydride alkene complexes

Angew. Chem. Int. Ed. 2014, 53, 1896.

Rapid enantioface exchange of Ir dihydride alkene complexes

Stefan Gruber

Mechanistic Model

Computational studies: Pher Andersson (Uppsala University) Kevin Burgess (Texas A&M) Kathrin Hopmann (University of Tromsø) Markus Meuwly (University of Basel))

Imine hydrogenation: unexpected mechanistic results

York Schramm

α,β -Unsaturated Nitriles

Hydrogenation of electrophilic C=C *bonds with base-activated Ir-PHOX catalysts:* V. Semeniuchenko, V. Khilya, U. Groth, *Synlett* **2009**, 271

α,β -Unsaturated Nitriles

Marc-André Müller

α,β -Unsaturated Nitriles

Angew. Chem. Int. Ed. 2014, 53, 8668.

Marc-André Müller

Selective Hydrogenation of Cyano-Substituted C=C Bonds

Marc-André Müller

Applications in the Synthesis of Natural Products

Synthesis of Platensimycin

Konrad Tiefenbacher & Johann Mulzer, Lars Tröndlin & A. P.

Synthesis of the Cucumber Beetle Pheromone Vittatalactone

Total Synthesis of Macrocidin A

Tomohiro Yoshinari, Marcus Schrems

Patrick Schnider **Roger Prétôt Guido Koch Dr. Olivier Legrand Dr. Andrew Lightfoot** Jörg Blankenstein **Frederik Menges Steven McIntyre Robert Hilgraf** Marc Schönleber Bettina Wüstenberg Prof. Masahiko Hayashi Dr. Martine Keenan Nicole Zimmermann Dr. William F. Drury III **Stefan Kaiser** Sebastian Smidt Dr. Clément Mazet

Dr. Stephen Roseblade Eva Neumann Dr. Sharon Bell Dr. Aie Wang Dr. Rui Fraga Marcus Schrems **David Woodmansee** Esther Hörmann Lars Tröndlin Dr. Alejandro Baeza **Adnan Ganic** Andreas Schumacher Marc-André Müller **Denise Rageot** Dr. Stefan Gruber Maurizio Bernasconi Dr. Fabiola Barrios-Landeros **York Schramm**

Swiss National Science Foundation Federal Commission for Technology & Innovation Solvias AG, Basel - DSM Nutritional Products Robin Scheil Dr. Eileen Jackson Charlotte Laupheimer

<u>X-Ray Analysis</u> Dr. Markus Neuburger (University of Basel)

<u>Computational</u> <u>Studies</u> Prof. Markus Meuwly (University of Basel)

<u>Kinetic Studies</u> Prof. Donna Blackmond (Scripps Research Institute)

<u>NMR</u> <u>Studies</u> Prof. Paul S. Pregosin *(ETH Zürich) PD Dr. Daniel Häussinger (Univ. of Basel)* Dr. Hans-Ulrich Blaser, Dr. Martin Studer Dr. Benoît Pugin *(Solvias AG, Basel)*

Dr. Thomas Netscher, Dr. Werner Bonrath (DSM Nutritional Products)