Artificial Photosynthesis from Solar Fuels To Solar Chemicals

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO₂ Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

Oil:

- About 40% of world energy (mainly transportation)
- The main source of raw material for the chemical industry.

H2020-Objectives

Tutorial: AP - Solar Fuels & Chemicals

Solar Energy

Advantages

- The most abundant: 1 h = Consumed in one year
- RENEWABLE

Inconvenient

- DAY NIGHT CYCLES
- Difficult to Store and transport

Normalized E	inergy	
Solar	8000	
Biomass	6	
Wind	5	
Energy used by humans	1	
PEAK SOLAR		

MORNING DEMAND EVENING DEMAND

Figure from: Energy Environ. Sci., 2015, 8, 126-157

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO2 Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

Solar Energy, Natural Photosynthesis

Kamiya et al. Nature 473, 55–60, 2011

> Energy management in chemical entities

Higher μ_i (chemical potential)

water-splitting: This process corresponds to split the water in O₂ and H₂. This process must be electro- or photo-catalyzed to be viable. This methodology would be a very safe way to transport hydrogen (as water).

Artificial Photosynthesis: Photocatalytic Scheme

Figure from: Balzani, V.; Credi, A.; Venturi, M. ChemSusChem 2008, 1, 26-58. 15

Figure from: S. Z. Qiao Chem. Soc. Rev., 2014,43, 7787-7812

Artificial Photosynthesis: Photoelectrochemical (PEC) cell

Photoanode

Photocatode

Water oxidation is the energetic demanding half reaction

Water reduction

Artificial Photosynthesis Monolithic devices

Fig. 1 Evolution of record solar-to-fuel efficiencies of different approaches, reported in the absence of chemical or electrical bias and under (simulated) solar illumination (for additional details, see ESI⁺). PEC = photoelectrochemical, PV = photovoltaics

Jan Rongé et al Chem. Soc. Rev., 2014, 43, 7963-7981

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO2 Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

Tools to study the different parts of AP Schemes

Photochemistry

Light harvesting system

Electrochemistry

Electrocatalyst, Electrolyte

Quantum yield Fast spectroscopy

Applications

Chemicals Sacrificial Agents

TON, TOF, Faraday yield Mechanism information

Overpotential

Basic studies

Mechanism Reaction intermediates TON, TOF

Chemical Sacrificial Agents:

Chemical oxidants: WO: CAN (1.6 V *vs* NHE, pH 1), NalO₄, Oxone (basic media), Ru(bpy)₃³⁺. **Chemical reductor: WR, CR:** Cp₂Co, Ln^{II}X₂, almost inexistent

Catalysis: Kinetics:	Structure – Activity relationships, yield, TON (n(P)/n(Cat)) and TOF (TON/t). Reaction order respect of the catalyst and the oxidant. Stop flow.
Spectroscopy:	Paramagnetic species. Identification of key intermediates in catalysis
(tit	ration with oxidant)
	NMR: No very informative. Purity
	EPR: Basic characterization coord. environment, oxidation and spin state
	UV-Vis: Monitoring kinetics,
	rRaman, IR: M=O, M-O-O-H, M-O-O-M
	IR: M-CO, M-CO ₂ ⁻
	EXAFS: Coord environment, oxidation and spin state
	ESI-MS: Identification of speciation in solution
In situ spectroscop	y: Under catalytic conditions (i.e. under excess of sacrificial agent)
Labelling studies:	D, ¹⁸ O, ¹³ C. Origin of O ₂ , H ₂ , CO, CH ₃ OH, CH ₄ and mechanism information.
	Kinetic Isotopic Effects of ¹³ C, ¹⁸ O and D. (PCET).
	Mass spectrometry, M=O, M-OH, M-CO, M-H

Heterogeneous vs Homogeneous: DLS, NTA, TEM, kinetics (inductions times, reaction orders). Relation structure activity. Poisoning experiments (Hg). Labelling studies at the ligand

Computational Modelling: Spectroscopy of intermediates. Electronic structures. Energy profiles....

Electrochemistry:

half-cell electrochemistry: cyclic votametry, potentiometry and RDE.

CV Electrocatalysis:	Structure – Activity relationships, Faraday yield (n(e ⁻)/n(Cat)), TON and TOF, overpotential. Pourbaix diagrams (E <i>vs</i> pH).
Kinetics:	Reaction order respect of the catalyst and the oxidant.
Spectroelectrochemistry:	Paramagnetic species. Identification of key intermediates in catalysis Mainly UV-Vis, IR (CO bonds) and rRaman (M=O bonds) Also possible: EPR and EXAFS
Labelling studies:	Similar to Chemical Agents. Mechanism information. KIE.
Catalytic Phase:	Heterogeneous vs homogeneous: Analysis of the surface of the electrode (TEM, SEM, EDX, XPS)

Electrochemistry:

Artificial Photosynthesis, Mechanistic Investigations

100 mM Bu_4NPF_6 in CH_3CN solution (under N_2), Scan rate: 50 mV/s

Chem. Eur. J. 2014, 20, 6171

Working electrode: Glassy Carbon; Reference electrode: calomerans electrode; Counter electrode: Pt wire 25

Artificial Photosynthesis, Mechanistic Investigations

Example: CV, TOF

100 mM Bu_4NPF_6 in CH_3CN solution (under N_2), Scan rate: 50 mV/s

Working electrode: Glassy Carbon; Reference electrode: calomerans electrode; Counter electrode: Pt wire 26

Calculation of TOF of the catalyst 1_{co}

$$\frac{i_{cat}}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RT(k[H^+]^2)}{F\nu}}$$

n= number of electrons involved R= universal gas constant, T= temperature F= Faraday's constant v= scan rate 27

Photochemistry:

Photosensitizer: $Ru(bpy)_3^{2+}$, $Ir(ppy)_2(bpy)$, $Cu(phen)_2$, Organic dyes.... Electron aceptors: Na_2S_2O ; Electron donors: Ascorbic acid, TEOA, terciary amines, etc..

doi:10.5772/62272 31

Reductions

Oxidations

J.I. Goldsmith, W.R. Hudson, M. S. Lowry, et al., J. Am. Chem. Soc., 2005, 127, 7502; F. Gärtner, A. Boddien, E. Barsch, et al., Chem. Eur. J., 2011, 17, 6425; ; F. Gärtner, D. Cozzula, S. Losse, et al., Chem. Eur. J., 2011, 17, 6998; P. Kurz, B. Probst, B. Spingler, R. Alberto, Eur. J. Inorg. Chem., 2006, 2966; B. Probst, C. Kolano, P. Hamm, R. Alberto, Inorg. Chem., 2009, 48, 1836; B. Probst, A. Rodenberg, M. Guttentag, et al., Inorg. Chem., 2010, 49, 6453; P. Du, J. Schneider, P. Jarosz, R. Eisenberg, J. Am. Chem. Soc., 2006, 128, 7726; J. Zhang, P. Du, J. Schneider, P. Jarosz, R. Eisenberg, J. Am. Chem. Soc., 2007, 129, 7726; P. Du, J. Schneider, F. Li, W. Zhao, et al., J. Am. Chem. Soc., 2008, 130, 5056; T. Lazarides, T. McCormick, P. Du, G. Luo, et al., J. Am. Chem. Soc., 2009, 131, 9192; T. McCormick, B. D. Calitree, A. Orchard, N. D. Kraut, et al., J. Am. Chem. Soc., 2010, 132, 15480; A. Fihri, V. Artero, A. Pereira, M. Fontecave, Dalton Trans, 2008, 5567; S. P. Luo, E. Mejia, A. Friedrich, A. Pazidis, et al., Angew. Chem. Int. Ed., 2013, 52, 419.

Photochemistry:

Photosensitizer: $Ru(bpy)_3^{2+}$, $Ir(ppy)_2(bpy)$, $Cu(phen)_2$, Organic dyes.... Electron aceptors: Na_2S_2O ; Electron donors: Ascorbic acid, TEOA, terciary amines, etc..

Photocatalysis:	Structure – Activity relationships, quantum yield, yield, TON and TOF.
Kinetics:	Reaction order respect of the catalyst and the oxidant. TAS.
Spectroscopy:	Paramagnetic species. Identification of key intermediates in catalysis. Characterization similar to chemical oxidants, but less accessibility to combination of light + spectroscopy and lower control over the reaction. Fluorescence (Life time). F. quenching experiments (reactivity)
In situ spectroscopy:	Under catalytic conditions: TAS (UV-Vis, EPR, etc)
Labelling studies:	Similar to Chemical Agents. Mechanism information. Kinetic Isotopic Effects.

Catalytic Phase: heterogeneous versus homogeneous: DLS, NTA, TEM, kinetics (inductions times, reaction orders). Relation structure activity. Labelling studies at the ligand

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO₂ Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

Artificial photosynthetic systems Energy in chemical bonds

• Water Oxidation is considered as the bottleneck of water splitting

Water Oxidation fundamental requirements

Potential diagram for the water molecule

Needs to be catalyzed
Artificial Photosynthesis

	Bernhard Lloret & Crabtree, Costas Brudvig, Gupta & Hill Mayer Dismukes Dhar Nocera Hill Llobet								
21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd
88.9058	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411
Yitrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rbodium	Palladium	Silver	Cadmium
71	72	73	74	75	10	77	78	79	80
Lu	Hf	Та	W	Re/	Os	Ir	Pt	Au	Hg
174.967	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59
Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury
	Meyer, Sun, Llobet, Thummel						- 1, ,		37

Basic and strong chelating multidentante ligands: N-ligands, anions.

N donor ligands: Amino-pyridine ligands, porphyrinic ligands, amidates

O donor ligands: Carboxylates, "alcohols", acetyl acetonates, ortho quinones...

Polyoxometalates (POM): Is a transition metal polyoxoanion. Usually, the metal ions are group 5 or 6 in high oxidation state. TM = V(V), Nb(V), Ta(V), Mo(IV) and W(IV). Additional heteroatoms such as Si, P Se or Ge are presence in the core.

Basic and strong chelating multidentante ligands: N-ligands, anions.

PCET

$$\begin{bmatrix} M^{n}-OH_{2} \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+1}-OH_{2} \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+2}-OH_{2} \end{bmatrix}$$

$$pKa \downarrow PCET \qquad pKa \downarrow PCET \qquad pKa \downarrow$$

$$\begin{bmatrix} M^{n}-OH \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+1}-OH \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+2}-OH \end{bmatrix}$$

$$pKa \downarrow PCET \qquad pKa \downarrow PCET \qquad pKa \downarrow$$

$$\begin{bmatrix} M^{n}=O \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+1}=O \end{bmatrix} \stackrel{E}{\longrightarrow} \begin{bmatrix} M^{n+2}=O \end{bmatrix}$$

$$M(n)=Oxo \ versus \ M(n-1)-Oxyl$$

Most common oxidation states active for water oxidation

Mn(V) / Fe(V) / Co (IV) / Ni(IV) ? / Cu (III) Ru(V) / Ir(V) ?

Tutorial: Water Splitting

Basic and strong chelating multidentante ligands: N-ligands, anions. Change delocalization: Non-innocent ligands. Multimetalic catalytic centers

Basic and strong chelating multidentante ligands: N-ligands, anions. Change delocalization: Non-innocent ligands. Multimetalic catalytic centers

b) Activation of the water molecule: internal base or Lewis acid.

Basic and strong chelating multidentante ligands: N-ligands, anions.

Change delocalization: Non-innocent ligands. Multimetalic catalytic centers

b) Activation of the water molecule: internal base or Lewis acid.

Examples for Water Oxidation Catalysts

AcO

Ac

 OH_2

TON 10⁶

Ac

References:

Meyer et al. JACS, 1982, 104, 4029 / Llobet et al. JACS, 2004, 126, 7798 / Thummel et al. JACS, 2005, 127, 12802 / Bernhard et al. JACS, 2008, 130, 210 / Crabtree et al. JACS, 2009, 131, 8730 / Albrecht et al. Angew. Chem. IE, 2010, 49, 9765 / Sun et al. Angew. Chem. Int. Ed. 2010, 49, 8934 and Nat Chem, 2012, 4, 418; Llobet et al JACS 2015, 137, 10786; Batista et al. JACS 2016, 138, 5511

Examples for Water Oxidation Catalysts

References:

Manganese

Lloret-Fillol, Costas Coord. Chem. Rev. 2017, 334, 2, Cao, Lai and Du EES 2012, 5, 8134-8157; Liu and Wang Coord. Chem. Rev. 2012, 256, 1115; D. G. Nocera et al Science 2008, 321, 1027; G. C. Dismukes et al Acc. Chem. Res., 2009, 42, 1935; T. J. Collins, S. Bernhard et al JACS, 2010, 132, 10990; C. L. Hill et al Science 2010, 328, 342; Lloret-Fillol, Costas Nat. Chem. 2011, 3, 807; L. Spiccia et al Nat. Chem. 2011, 3, 462. J. M. Mayer Nat. Chem. 2012, 4, 498-502. Okamura, M. et al. Nature 2016, 530, 465

It is difficult to distinguish the nature of the active species in solution

WO molecular catalysts

J. D. Blakemore, R. H. Crabtree, and G. W. Brudvig *Chem. Rev.* 2015, 115, 12974; M. A. Asraf, H. A. Younus, C. I. Ezugwu, A. Mehta and F. Verpoort *Catal. Sci. Technol.*, 2016, 6, 4271.

It is difficult to distinguish the nature of the active species in solution

WO molecular catalysts

- M oxides stable at low pHs \rightarrow Ru, Ir, Co, Mn ...

RuO₂, IrO₂, Co₃O₄, NiCo₂O₄, Mn₂O₃

Photocatalytic and chemical WO

NiFeAlO₄, NiFeGaO₄, NiFeCrO₄, Co₃O₄

Electrochemical WO

J. D. Blakemore, R. H. Crabtree, and G. W. Brudvig *Chem. Rev.* 2015, 115, 12974; M. A. Asraf, H. A. Younus, C. I. Ezugwu, A. Mehta and F. Verpoort *Catal. Sci. Technol.*, 2016, 6, 4271.

Mechanistic proposals for the O-O bond formation in the Acid based and direct coupling water oxidation.

Water Oxidation Mechanism

Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 4935

Background

Molecular complexes

- · Mechanistic understanding
- \cdot Catalyst design

Iron

- . Beyond the state of the art
- Biocompatible
- Earth abundant

5	6	7	8	9	10	11
23	24	25	26	27	28	29
V	Cr	Mn	Fe	Co	Ni	Cu
vanadium	chromium	manganese	iron	cobalt	nickel	copper
50.94	52.00	54.94	55.85	58.93	58.69	63.55
41	42	43	44	45	46	47
Nb	Mo	Тс	Ru	Rh	Pd	Ag
niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver
92.91	95.96(2)		101.1	102.9	106.4	107.9
73	74	75	76	77	78	79
Та	w	Re	Os	lr	Pt	Au
tantalum	tungsten	rhenium	osmium	iridium	platinum	gold

Selected References: Cao, Lai and Du EES **2012**, *5*, 8134-8157; Liu and Wang *Coord. Chem. Rev.* **2012**, *256*, 1115; Bonnet et al. *Coord. Chem. Rev.* **2012**, *256*, 1451; A. Sartorel, F. Scandola, S. Campagna *et al JACS* **2012**, *134*, 11104; D. G. Nocera *et al Science* **2008**, *321*, 1027; Llobet *et al Angew. Chem. IE.*, **2009**, *48*, 2842; G. C. Dismukes *et al Acc. Chem. Res.*, **2009**, *42*, 1935; T. J. Collins, S. Bernhard *et al JACS*, **2010**, *132*, 10990; C. L. Hill *et al Science* **2010**, *328*, 342; L. Spiccia *et al Nat. Chem.* **2011**, *3*, 462. J. M. Mayer Nat. Chem. **2012**, *4*, 498-502

Homogeneous Water Oxidation Catalysts Based on

First Row Transition Metals

- a) Strongly Chelating and Robust Ligands
- b) Stabilization of High Oxidation States

Among many other

Model system

Oxidant: Cerium (IV) amonium nitrate (CAN), NaIO4 ...

C. A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller, K. Wieghardt, Inorg. Chem. 2000, 39, 5306-5317

J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que, *Science* 2003, *299*, 1037-1039.
A. Thibon, J. England, M. Martinho, V. G. Young, J. R. Frisch, R. Guillot, J.-J. Girerd, E. Münck, L. Que, F. Banse, *Angew. Chem. Int. Ed.* 2008, *47*, 7064-7067
A. Company, I. Prat, J. R. Frisch, R. Mas-Ballesté, M. Güell, G. Juhász, X. Ribas, E. Münck, J. M. Luis, L. Que, M. Costas, *Chem. Eur. J.* 2011, *17*, 1622-1634.
I. Prat, J. S. Mathieson, M. Güell, X. Ribas, J. M. Luis, L. Cronin, M. Costas, *Nat. Chem.* 2011, *3*, 788/793.

Extension to selected tetra- and pentadentate iron complexes

Effect of ligand environment and coordination number

Sun et al. Asian J. Chem. 2014, DOI: 10.1002/asia.201400066

Extension to selected tetra- and pentadentate iron complexes

Effect of coordination environment and coordination number

3

Tentative mechanism

J. Lloret-Fillol et al. Nat. Chem. 2011, 3, 807
Z. Codolà et al. Chem. Eur. J. 2013, 19, 8042
F. Acuña, et al. Chem. Eur. J. 2014, 20, 5696
Z. Codolà et al Nature Comm. 2015, 6:5865

J. M. Mayer, Nat Chem 2012, 4, 498.

M. T. Kieber-Emmons, JACS, 2017, 139, 8586.

S3 state obtained after two-flash illumination at a resolution of 2.35 Å using a timeresolved femtosecond crystallography with a femtosecond X-ray free electron lasers (XFEL)

Kok cycle

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO₂ Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

- Development of alternative fuels which are clean, sustainable and renewable.
- Hydrogen produced from solar energy through the catalyzed decomposition of water is an ultimate clean fuel and its use as a primary energy source desirable.
- Current electrochemical catalysts for H₂ production suffer from large overpotentials, short live times and they are based on expensive metals (platinum).
- A water reduction catalyst (WRC) based on "Earth abundant elements" (first row transition metal) is required.

Toward a Hydrogen Economy (special issue). *Science* **2004**, *305*, 957 Vincent, K. A.; Cracknell, J. A.; Parkin, A.; Armstrong, F. A. *Dalton Trans.* **2005**, *21*, 3397-3403. Turner, J. A. Science **2004**, *305*, 972-974. Tutorial: Water Splitting

Natural molecular hydrogen generation: Hydrogenases

$$2H_2 \leftrightarrow 2H^+ + 2e^-$$

- The **hydrogenase** enzyme catalyses the reversible oxidation of molecular H₂.
- Hydrogenases are classified based on metal atoms composing the active site: [NiFe], [FeFe], and [Fe]-only.
- Understanding its catalytic mechanism might help to design catalyst for H₂ production.

Vignais, P.M.; Billoud, B.; Meyer, J. *FEMS Microbiol. Rev.* **2001**, *25* (4), 455–501 Fontecilla-Camps, J.C.; Volbeda, A.; Cavazza, C<.; Nicolet ,Y. *Chem. Rev.* **2007**, *107* (10), 4273–4303.

- 2444

Hydrogenases catalyzes the reversible oxidation of molecular hydrogen:

Two-proton, two-electron production and oxidation

Vignais, P.M. et al. FEMS Microbiol. Rev. 2001, 25, 455.

Fontecilla-Camps, J.C. et al. Chem. Rev. 2007, 107, 4273.

21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd
88.9058	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411
Yitrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rbodium	Palladium	Silver	Cadmium
71	72	73	74	75	76	77	78	79	80
Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg
174.967	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59
Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury

Strong chelating multidentante ligands, which stabilize complexes in low oxidation states TYPES of Ligands:

Soft ligands such as di-phophines (P donor), thiols (S donor), CO (Organometallic)

N donor: polypiridin aminoligands, imines, glioxime, porphyrins,

Polyoxometalates (POM): Rare examples.

a) Stabilization of Low Oxidation States

Strong chelating multidentante ligands, which stabilize complexes in low oxidation states **PCET**

b) Pendan base

• The active site of the [FeFe] hydrogenase, presents a pendant base that facilitate the proton delivery into the iron.

b) Pendan base Hydride formation at the active site of the [Fe-Fe] hydrogenase's type

Notice that we did not discussed the electron reduction events at the catalytic center.

Split of the ΔH and ΔS terms

The two terms contribute in the same TS producing a higher energy barrier.

M. Ahlquist et al Chem. Commun., 2012, 48, 4450-4452 and Dalton Trans., 2013, 42, 7816

Ohhara, T. et al. Science **2013**, 339, 682 Ott, S. et al. Chem. Eur. J. **2010**, 16, 60 Gray, D. L. et al. J. Am. Chem. Soc. **2009**, 131, 6942 Berben, L. A. *et al. Angew. Chem. Int. Ed.* **2015**, *127*, 11808 Eisenberg, R. *et al. Angew. Chem. Int. Ed.* **2012**, *51*, 1667 Peters, J. C. *et al. J. Am. Chem. Soc.* **2012**, *134*, 3164 Dubois, D. L.. *et al. Science.* **2011**, *133*, 863 70

DuBois, M. R.; DuBois, D. L. *Inorg. Chem.* **2003**, *42*, 216; Helm, M. L. *ACS Catal.* **2015**, *5*, 2116; R. D.; DuBois, D. L. *J. Am. Chem. Soc.* **2006**, *128*, 358–366; Bullock, R. M.; DuBois, D. L. *J. Am. Chem. Soc.* **2011**, *133*, 5861; DuBois, D. L.; Bullock, R. M. *Angew. Chem. Int. Ed. Engl.* **2012**, *51*, 3152; DuBois, M. R.; DuBois, D. L. *Science* **2011**, *333*, 863; M.; DuBois, D. L.; Bullock, R. M. *J. Am. Chem. Soc.* **2013**, *135*, 9700;

Water Reduction: Selected Examples

Water Reduction: Selected Examples

Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J. Chem. Soc. Rev. 2013, 42, 2388-2400

Hamm, P. et al. Inorg. Chem. 2015, 54, 646

Alberto, R. et al. Chem. Commun. 2014, 50, 6737

Chavarot-Kerlidou, M. et al. Coord. Chem. Rev. 2015, 304, 3

<u>Heterolytic</u>: The metal-hydride complex is further reduced and protonated to evolve H_2 . Two electrons and two protons are delivered to a single metal center and a putative [Mⁿ]-H is formed.

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO₂ Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

Solar Fuels:

 \cdot CO₂ (Photo)reduction to formic acid, methanol or methane:

 $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH$

Lewis and Nocera *PNAS* **2006**, *103*, 15729-15735 Meyer and co-workers *Inorg. Chem.* **2005**, *44*, 6802-6827 Moore and co-workers *Acc. Chem. Res.* **2009**, *42*, 1890-1898

CO2 Reduction to CO, HCO₂H and hydrocarbons

CO ₂ reduction	
Reaction	$E^{0\prime}$
$CO_{2} + 1e^{-} \rightarrow CO_{2}^{\bullet^{-}}$ $CO_{2} + 2H^{+} + 2e^{-} \rightarrow HCO_{2}H$ $CO_{2} + 2H^{+} + 2e^{-} \rightarrow CO + H_{2}O$ $2CO_{2} + 2H^{+} + 2e^{-} \rightarrow H_{2}C_{2}O_{4}$ $CO_{2} + 4H^{+} + 4e^{-} \rightarrow HCHO + H_{2}O$	-1.9 -0.61 -0.53 -0.49 -0.48
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$ $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	$\begin{array}{c} -0.38 \\ -0.24 \end{array}$

Molecular complexes for CO₂ Reduction

a) Stabilization of Low Oxidation States

Strong chelating multidentante ligands

TYPES of Ligands:

Soft ligands such as di-phophines (P donor), thiols (S donor), CO (Organometallic)

N donor: polypiridine, bipyridines, amine based macrocycle ligands, porphyrins,

O. Ishitani, M. Robert and co. ACS Catal. 2017, 7, 70

a) Stabilization of Low Oxidation States

Strong chelating multidentante pi-acceptor ligands Change delocalization: Non-innocent ligands.

D. C. Grills, M. Z. Ertem, J Rochford and co. J. Am. Chem. Soc. 2017, 139, 2604

Tutorial: Water Splitting

a) Stabilization of Low Oxidation States

Strong chelating multidentante pi-acceptor ligands

Change delocalization: Non-innocent ligands.

b) Activation of the CO₂ molecule: internal brønsted or Lewis acid.

J. P. Sauvage y co. 1984

D. L. DuBois y co. 1991

T. Meyer, M. Brookhart y co. 2012

S. Chardon-Noblat,

A. Deronzier y co. 2014 C. Costetin, J. M. Savéant y co. 2012

*****##

CO₂ reduction or CO reduction to CH₄

Selective formation of oxalate, Low overpotential Prior the reduction O_2 allows for capturing the CO_2 from air

E. Bouwman, and co. Science, 2010, 327, 313.

Water Splitting

Water Oxidation: source of electrons

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

E = 1.23 V at pH 1 Δ G = 113.4 kcal·mol⁻¹

Lewis and Nocera *PNAS* **2006**, *103*, 15729-15735 Meyer and co-workers *Inorg. Chem.* **2005**, *44*, 6802-6827 Moore and co-workers *Acc. Chem. Res.* **2009**, *42*, 1890-1898

Solar Fuels:

· (Photo)chemical Water Splitting:

 $2H^+ + 2e^- \rightarrow H_2$

 \cdot CO₂ (Photo)reduction to formic acid, methanol or methane:

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH$$

Outline of the tutorial

- Introduction
 - The energy challenge (Technological perspective)
- Artificial Photosynthesis, Water Splitting
 - Natural and Artificial Photosynthesis
 - Research Tools
 - Water Oxidation
 - Water Reduction
 - CO₂ Reduction
- Towards Solar Chemicals
 - Examples of oxidation and reduction reactions

General Scheme

n·e⁻ S₂ $S_1^{(oxid)}$ 110 Cat Cat S₂(red) **S**₁ n·E⁺ Water Oxidation Solar Fuels: H₂, CO, CH₃OH **Oxidation of Reduction of Organic Substrates Organic Substrates**

> Light as energy source to carry out energetically up hill transformations

Light as energy source to carry out transformations

CO₂ → HCO₂H L-Glutamate dehydrogenase Ketone reductions Hydrogenation

J. Am. Chem. Soc., **2012**, *134*, 11455 ACS Appl. Mater. Interf., **2014**, 6, 8434 Angew. Chem., **2012**, *124*, 11792 Nature Commun., **2014**, 5, 3145 Jin-Ook Beak, C.B. Park A. Corma, F. Hollmann Fraser A. Armstrong....

OXIDATIONS: Selected electrocatalytic and PEC processes

T. Meyer, J. Am. Chem. Soc., 2014, 136, 9773
M. Sigma, J. Am. Chem. Soc. 2015, 137, 16179
K.-S. Choi, Nat. Chem. 2015, 7, 328
Y. Sun, J. Am. Chem. Soc. 2016, 138, 13639

S.S. Stahl, Nature 2016, 535, 406

P. Baran *Nature* **2016**, *533*, 77

C. P. Berlinguette Nat. Commun 2017, 8, 390

OXIDATIONS: Selected electrocatalytic and PEC processes

BiVO₄ photoanode

K.-S. Choi, Nat. Chem. 2015, 7, 328

OXIDATIONS AND REDUCTIONS: Photochemical

J. Lloret et al. An. Quím. 2016, 112, 133

Reduction of olefins

TiO₂ modified with the B₁₂ complex

Under UV irradiation $(\lambda = 365 \text{ nm})$

Hisaeda, Y. et al. ChemPlusChem. 2014, 79, 1250

König, B. and co. Chem. Sci. 2015, 6, 2027

CO₂ → HCO₂H L-Glutamate dehydrogenase Ketone reductions Hydrogenation *J. Am. Chem. Soc.*, **2012**, *134*, **11455** *ACS Appl. Mater. Interf.*, **2014**, *6*, 8434 *Angew. Chem.*, **2012**, *124*, 11792 *Nature Commun.*, **2014**, *5*, 3145 Jin-Ook Beak, C.B. Park A. Corma, F. Hollmann Fraser A. Armstrong....

Photocatalytic reduction of acetophenone

J. Lloret-Fillol Chem. Sci., 2017, 8, 4739

Photocatalytic reduction of acetophenone

Photocatalytic reduction of aromatic ketones and aldehydes

J. Lloret-Fillol Chem. Sci., 2017, 8, 4739

Hydride mechanism

J. Lloret-Fillol Chem. Sci., 2017, 8, 4739

HAT mechanism

J. Lloret-Fillol Chem. Sci., 2017, 8, 4739

Website: http://www.iciq.org/research

Dr. A. Casitas
Dr. A. Call (H₂ and Ketones)
C. Casadevall (Olefins)
Dr. F. Acuña-Pares (DFT)
Dr. N. Kandoth (Photochemistry)
M. Claros (Cyclizations)
Dr. F. Franco (CO₂ reduction)
Dr. E. Smirnova (Organomet.)
Dr. S. Sekhar Mondal (MOF)
K. Michaliszyn (Ligand Design)
F. Ungeheuer (Methodology)

Institut de Química Computacional i Catàlisi

Prof. M. Costas Dr. I. Gamba Dr. J. M. Luis (DFT) Prof. L. Jr. Que

RAMÓN Y CAJAL PROGRAM

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

European Research Council