

Organometallic Chemistry for Homogeneous Catalysis

Dedicated to all who suffer as a result of the Italian earthquakes, especially in Camerino

David Cole-Hamilton EaStCHEM, University of St. Andrews President EuCheMS

The Edinburgh and St Andrews Research School of Chemistry

EaStCHEN

Thanks to:

Paul Kamer University of St Andrews

Bob Tooze Sasol Technology UK Ltd (St. Andrews)

Piet van Leeuwen University of Amsterdam, ICIQ Tarragona

Books

Homogeneous Catalysis: Understanding the Art

Piet W. N. M van Leeuwen, Kluwer Dordrecht, 2004

Applied Homogenous Catalysis with Organometallic Compounds,

Eds. B. Cornils and W. A. Herrmann, Wiley, VCH, Weinheim, 2002

Outline

- Background to Catalysis
- Basic Principles of Homogeneous Catalysis
- Selected Examples
- Using Bioresources
- Catalysts Separation and recycling
- Flow homogeneous catalysis

Energy profile of a reaction

A catalyst lowers the activation energy of a reaction

EaStCHEN

The Edinburgh and St Andrews

 $A \xrightarrow{k_1} A^* \xrightarrow{k_2} B$

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

How Does a Catalyst Work?

- Lowering activation energy
- •Stabilization of a reactive transition state
- •Bringing reactants together •proximity effect •orientation effect

Tsoo Mei Marriage broker - catalyst

Enabling otherwise inaccessible reaction paths

12 Principles of Green Chemistry

Ρ	Prevent waste	
R	<u>Renewable materials</u>	
Ο	Omit derivatisation	
D	Degradable chemical products	
U	Use safe synthetic methods	
С	Catalytic reagents	
Т	Temperature, pressure ambient	
1	In-process monitoring	
V	Very few auxiliary substances	
Е	E-factor, maximise feed in product	
L	Low toxicity of chemical products	
Y	Yes, it is safe	
	P. Anastas J. Warner	

The Edinburgh and St Andrews

E Factor

E-Factor = total waste (kg) / product (kg)

E-Factors in the chemical industry

Industry	Product tonnage	E-Factor
segment		
Oil refining	10 ⁶ -10 ⁸	<0.1
Bulk chemicals	10 ⁴ -10 ⁶	<1-5
Fine chemicals	10 ² -10 ⁴	5-50
Pharmaceuticals	10-10 ³	25-100

E-Factor in Pharmaceuticals:

Multiple step syntheses

The Edinburgh and St Andrews

Use of classical stoichiometric reagents

However, lower absolute amount (compared to bulk).

R. Sheldon

Advantages of Catalytic Process

Methyl Methacrylate (for Perspex)

Old process: 2.5 kg waste / kg product

Different types of Catalyts

Heterogeneous

- Usually a solid in a different phase from the reactants
- Usually metal or metal oxide

Homogeneous

The Edinburgh and St Andrew

- In the same phase as the reactants
- Usually a dissolved metal complex

Enzyme (Biological)

- Usually a complex system in water
- Highly active and selective
- Sometimes rather unstable
- Becoming increasingly popular

World Catalyts market \$ 9 billion

Heterogeneous vs Homogeneous Catalysis

Heterogeneous	Homogeneous
Solid metal or metal oxide	Metal complex
Solvent not required	Solvent required (usually)
Thermally robust	Thermally sensitive
Only surface atoms available	All metal centres available
Selectivity can be poor	Selectivity can be tuned
Difficult to study while operating	In situ spectroscopy
Easy separation from products	Difficult product separation
Some processes only heterogeneous	Some processes only homogeneous
$N_2 + 3 H_2 \rightarrow 2 NH_3$	MeOH + CO \longrightarrow MeCO ₂ H
Exhaust catalyst	Hydroformylation of alkenes

EaStCHE

The Edinburgh and St Andrews

Counting electrons

- Determine the oxidation state of the metal and hence the number of d electrons.
- Add 2 for each ligand (note that benzene coordinates through the 3 double bonds so gives 6).
- Add electrons for overall negative charges, subtract electrons for overall positive charges.

Rh ^{III} 4d ⁶	6 e
6 x 2e ligands	12 e
Total	18 e

Reactions in catalytic cycles

Coordination

• Need a vacant site (often 14 or 16 e intermediate)

 Rh^{III} 4d⁶
 6 e

 5 2e ligands
 10 e

 Total
 16 e

aStCHE

The Edinburgh and St Andrews

18 e

Bonding of alkenes

- Donation of electron density from π orbital on C=C to an empty s, p or d orbital on the metal
- Back donation of electron density from the filled t_{2g} level on the metal to the empty π^* orbital on C=C

Adds 2 e

Bonding of CO

- Donation of a lone pair of electrons from the C atom of CO to an empty s, p or d orbital on the metal
- Back donation of electron density from the filled t_{2g} level to the empty π^* orbital on CO

Substitution

Octahedral complexes

Mechanism

$$[ML_6]^{n+}$$
 + L' \rightarrow $[ML_5L']^{n+}$ + L

 $[ML_6]^{n+} + L' \rightarrow [ML_6L']^{n+} \rightarrow [ML_5L']^{n+} + L$ 7 coordinate

1st order in L'

 ΔS^{\ddagger} negative

No change in e count

Oxidative Addition

Concerted addition

Alkyl halides – S_n2

Should give inversion of configuration

EaStCHE

The Edinburgh and St Andrews

If both pathways have similar energy partial racemisation will occur

-

J. K. Stille and K. S. Y. Lau, Acc. Chem. Res. 1977, 10, 434

σ–bond metathesis

Occurs when metal is in highest oxidation state (d⁰) and oxidative addition is not possible

Migratory insertion

- Incoming ligand does not insert
- Incoming ligand ends up *cis* to the acyl
- Me and CO involved in migration are mutually *cis*

Which moves? ¹³CC ¹³CO ¹³CO Me₁₃CO ¹³CO OC ¹³CC OC. ¹³CO OC. OC. ^{_}Me + + Μó CO OC' 'CO OC OC' CO CO ĊΟ Мe Мe ĊΟ ĊΟ С 2 1 Α В Ratio 1 If CO moves cannot get C Me must move. \mathbb{R}^2 R³ R¹ R^1 \mathbb{R}^3 R^1 R³ M C≡O **Retention of configuration** Μ M O **EaStCHEN**

The Edinburgh and St Andrews

Hydride migration and β-hydrogen abstraction

The Edinburgh and St Andrews

Takasago Menthol Synthesis

Attack on Coordinated ligands

E. O. Fischer and co-workers

No change in e count

The Wacker Process

$\begin{array}{rcrcrcrcrcl} [\mathsf{PdCl}_4]^{2\text{-}} &+ \mathsf{C}_2\mathsf{H}_4 &+ \mathsf{H}_2\mathsf{O} &\to \mathsf{CH}_3\mathsf{CHO} &+ \mathsf{Pd} &+ 4\,\mathsf{Cl}^{-} &+ 2\,\,\mathsf{H}^+\\ &\\ & \mathsf{Pd} &+ 2\,\mathsf{Cu}^{2\text{+}} &+ 4\mathsf{Cl}^{-} &\to [\mathsf{PdCl}_4]^{2\text{-}} &+ 2\,\mathsf{Cu}^+\\ &\\ & \frac{2\,\mathsf{Cu}^+ &+ \frac{1}{2}\,\mathsf{O}_2 &+ 2\,\mathsf{H}^+ &\to \,\mathsf{Cu}^{2\text{+}} &+ \,\mathsf{H}_2\mathsf{O}\\ &\\ & & \mathsf{C}_2\mathsf{H}_4 &+ \frac{1}{2}\,\mathsf{O}_2 &\to \,\mathsf{CH}_3\mathsf{CHO} \end{array}$

1970's 2 M tonnes per year - decreasing

Mechanism

Unit steps in Catalytic reactions

			Change in No
In	troduction of substrates onto metal ce	entre	of electrons
-	- Simple Coordination		+2
-	Substitution		0
-	Oxidative Addition		+2
-	Sigma bond metathesis		0
R	eactions between substrates in coord	ination sphere.	
-	- Migratory insertion		-2
-	Attack of Nucleophiles onto coordin	ated ligands	0
-	β-H abstraction		+2
R	eleasing substrates from Metal Centre	9.	
-	Decoordination]	-2
-	- Substitution		
-	Reductive Elimination		-2
D-Q -	Sigma bond metathesis]	0
EdSIGHE			

The Edinburgh and St Andrews

16/18 e Rule

• Catalytic cycles often proceed through a variety of intermediates alternating between 16 and 18 electrons

Th Euchems LIVERPOOL UK 26-30 August 2018 Chemistry Congress

http://www.rsc.org/events/euchems2018 Register now!

23-26 January, 2018

A Gordon-style conference for chemists around the Atlantic Basin

Register NOW at http://abcchem.org/registration/

Catalytic hydrogenation (Wilkinson's catalyst)

By ${}^{31}P$ and ${}^{1}H$ NMR spectroscopy see only compound 2, a resting state outside the catalytic cycle – no information about cycle

Kinetics suggest H migration onto alkene is rate determining

Parahydrogen allows detection of II

EaStCHEN

The Edinburgh and St Andrews

Duckett et al, J. Am. Chem. Soc, 1994, **116**, 10548

Asymmetric hydrogenation

W. S. Knowles Nobel Prize, 2001

W.S. Knowles and M.J. Sabacky, Chem. Commun., 1968, 481

EaStCHEN

The Edinburgh and St Andrews

Ketone hydrogenation

Rhodium based catalysts are usually of very low activity unless very electron rich (e. g. [RhH(CO)(PEt₃)₃] for aldehyde hydrogenation, J. K. MacDougall et al, *J. Chem Soc. Dalton Trans.*, 1996, 1161)

Ruthenium based catalysts are preferred

Asymmetric Catalysis by Architectural and Functional Molecular Engineering:

Practical Chemo and Enantioselective Synthesis of Ketones

R. Noyori Nobel Prize, 2001

Hydrogenation of activated ketones

EaStCHEN

The Edinburgh and St Andrews

R. Noyori and T. Ohkuma Angew. Chem. Int. Edi. 2001,40, 40-

Ligands for asymmetric ketone hydrogenation

Outer sphere mechanism

-

P. A. Dub and J. C. Gordon, *Dalton Trans.*, 2016, **45**, 6756

The Edinburgh and St Andrews

$+ CO + H_2 \longrightarrow + CHO +$

High linear selectivity is essential

Hydroformylation mechanism

Linear branched selectivity

The Edinburgh and St Andrews

Structure-selectivity relation

Carbonylation of methanol (Cativa)

Ethene carbonylation (Lucite)

D. Johnson, http://www.soci.org/chemistry-and-industry/cni-data/2009/20/a-winning-process

Methoxycarbonylation of alkenes

Isomerisingmethoxycarbonylation of unsaturated esters

Cross coupling reactions: a success story

The Edinburgh and St Andrews

Heck Coupling Mechanism

Cross-Metathesis

metathesis: from Greek *meta*, change; *tithenai*, place

Well-Defined Metathesis Catalysts

Schrock

- **Range of biphen / binaphtholates**
- tunable: ARCM, chiral ROMP

Grubbs "2nd generation"

Grubbs I

EaStCHE

The Edinburgh and St Andrews

Robust (>> tolerant of air, water, polar functional-groups) Very wide range of processes catalyzed by Ru

Nobel Prize, 2005 with Yves Chauvin

Ethene polymerisation

$$Cp_2ZrMe_2 + MAO \longrightarrow [Cp_2ZrMe]^+$$

partially hydrolysed Me₃Al

W. Kaminsky, K. Kulper, H. H. Brintzinger and F. Wild, *Angew. Chem.-Int. Edit. Engl.*, 1985, **24**, 507

Oil - What next?

Using waste streams are best

Waste Oils

Tall Oil (paper)

HO

2 M tonnes per year

Cashew nut shell liquid (food)

300,000 tonnes per year

Uses of α,ω–difunctionalised compounds

FibresElastomersThermoplasticsMelt adhesivesCoatingsEngineering plastics,Nylons (2 M tonnes per year).Overall 3 M tonnes per year

D. Quinzler and S. Mecking, *Angew Chem.* 2010, **49**, 4306; F. Stempfle, D. Quinzler, I. Heckler, S. Mecking, *Macromolecules* 2011, **44**, 4159-4166

Biodegradable

Desirable

Undesirable

Manila Harbour

Gas pipeline (HDPE 50 % of all polyethylene)

Oilprice.com

 $[Pd] = 0.008 \text{ mol dm}^{-3}$, $[DTBPMB] = 0.04 \text{ mol dm}^{-3}$, $[MSA] = 0.08 \text{ mol dm}^{-3}$, substrate (2 cm³, 6 mmol), methanol (10 cm³), $p_{CO} = 30$ bar, 80 °C, 22 h,

C. Jimenez-Rodriguez, G. R. Eastham and D. J. Cole-Hamilton, Inorg. Chem. Commun., 2005, 8, 878

High oleic sunflower oil -3.5 kg in 12 dm³ autoclave

EaStCHEN

The Edinburgh and St Andrews

G. Walther, J. Deutsch, A. Martin, F.-E. Baumann, D. Fridag and A. Köckritz, *ChemSusChem*. 2011. **4**. 1052

Methoxycarbonylation of natural oils

	Methyl oleate (Aldrich)	Olive (Tesco)	Rapeseed (Tesco)	Sunflower (Tesco)
Oleate / %	>90	73	64	38
Linoleate / %		2	19	50
Linolenate / %		3	10	2
Diester / g from 10 mL oil	9.0	6.9	6.4	3.4
Yield / % (from oleate)		74.7 102.3	69.3 108.3	36.8 96.8
Cost of diester / kg ⁻¹	\$ 6500 (>99 %) \$ 50 (70 %)	\$ 4.3	\$ 1.3	Marc F

MRL Furst, R. le Goff, D. Quinzler, S. Mecking and D. J. Cole-Hamilton, Green. Chem. 2012, 14, 472

Tall Oil Fatty Acids (TOFA)

Why so selective?

Catalyst recovery and recycling

D. J. Cole-Hamilton, Science, 2003, 299, 1702

D. J. Cole-Hamilton and R. P. Tooze, eds., *Catalyst Separation, Recovery and Recycling; Chemistry and Process Design*, Springer, Dordrecht, 2006

Hydroformylation Conditions

Parameter	Cobalt /(+phosphine)	Rhodium / PPh ₃
Temperature / °C	120-160 (150-190)*	80-120
Pressure / bar	270-300 (40-100)	12-25
l:b	3:1 (10:1)	12:1
Side reactions	(Alkanes, <i>alcohols</i> , esters, acetals)	Condensed aldehydes (used as solvent)
Stability	Stable to high T	Decomposes at 110 °C
Catalyst recovery	Difficult but possible	Easy <c<sub>7</c<sub>

Problems with Homogeneous Catalysts

- Separation of the solvent, catalysts and product
- Recycling of the catalyst
- The use of volatile organic solvents
- Batch or batch continuous processing

The separation problem

Please make me a cup of coffee

EaStCHE

The Edinburgh and St Andrews

Now please bring me:

- The pure coffee
- The pure sugar
- The pure milk
- The pure water

All from this cup of coffee All with 100 % recovery

Aqueous biphasic catalysis

Originally proposed by **J. Manessan** in *Progress in Research*, Eds F. Basolo and R. L. Burwell, Plenum Press, London, 1973, p 183 Originally demonstrated by **E. Kuntz**, Fr. Demande, 1975, 2,314,910

Ruhrchemie Reactor

< 1 ppb Rh loss

Only operational for propene Low solubility of higher alkenes limits mass transfer

E. Wiebus and B. Cornils in *Catalyst separation, recovery and recycling: Chemistry and process Design,* Eds D. J. Cole-Hamilton and R. P. Tooze, Springer, Dordrecht, 2006, p 105

Continuous flow reactor for low volatility substrates and products

Solvent

EaStCHEM

The Edinburgh and St Andrews

- Involatile
- Insoluble in scCO₂
- Dissolves catalyst

Catalyst

- Soluble in solvent
- Insoluble in scCO₂

IONIC LIQUID?

IONIC CATALYST

P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin and D. J. Cole-Hamilton, J. Am. Chem. Soc., 2003, 125, 15577

Flow homogeneous catalysis

D. J. Cole-Hamilton, Science, 2003, 299, 1702-1706

The Edinburgh and St Andrews

SILP hydroformylation with SCF flow

Catalyst stability

What we really want

It does, for example, no good to offer an elegant, difficult and expensive process to an industrial manufacturing chemist, whose ideal is something to be carried out in a disused bathtub by a one-armed man who cannot read, the product being collected continuously through the drain hole in 100% purity and yield.

Sir John Cornforth, *Chemistry in Britain*, **1975**, 342.

Continuous FLOW

Ο

Ö

R. Duque, P. J. Pogorzelec and D. J. Cole-Hamilton, Angew. Chem., Int. Ed., 2013, 52, 9805

The Edinburgh and St Andrews

Conclusions

Homogeneous Catalysts

