

Development of the Molybdenum-catalyzed Deoxydehydration – an example of synergistic use of both experimental and theoretical tools

Research Overview- Fristrup

Structural properties

Chemistry/Biology

WO2015028028 A1

ChemSusChem **2015**, *8*, 613 Green Chem **2016** በቂ በ የመደር የ መደር የ

Overview

- Theoretical and Experimental methods are complementary
- When used together the information is more than the sum $\textcircled{\odot}$

- I will highlight this approach using two examples:
 - Ruthenium-catalysed Amidation of Alcohols
 - Rhenium and Molybdenum-catalyzed Deoxydehydration

Plan for todays lecture

- The toolbox of the organometallic chemist
 - Both experimental and theoretical

• Ruthenium catalyzed amide formation

• Conversion of diol to alkenes using

Rhenium or Molybdenum

DTU

In the toolbox: Analytical Chemistry

Chromatography (GC, GC-MS, HPLC, LC-MS)

In the toolbox: Special Equipment

- Autoclaves for high-temperature, high-pressure reactions
 - Purchase, installation
 - Used routinely for reaction conducted at up to 250 °C/80 bar.
 - Sample extraction for off-line analysis
 - Adaptation to in-situ IR probe
- MW reactor with auto-sampler
 - Used routinely for reactions conducted at up to 300 °C/30 bar.
- Design of Swagelok equipment:
 - high-pressure reactor, relief valves
 - aluminum heating blocks

In the toolbox: Molecular Modelling

Fristrup ISOC 2017

Ru-NHC catalyzed Amidation of Alcohols

- Amides are formed in high yields after 24 hours
- Both aromatic and aliphatic alcohols can be used
- Stereogenic centers are preserved during the reaction
- Primary amines react successfully
- I. S. Makarov, P. Fristrup, R. Madsen, Chem Eur. J. 2012, 18, 15683 15692 .

Ilya Makarov Robert Madsen

Classical Hammett study

 In 1937 Hammett worked on the acidity of substituted benzoic acids and found a connection between the acidity and the electronic nature of the substituent.

. P. Hammett (1894 - 1987)

Other examples include:

Heck reaction: P. Fristrup, S. Le Quement, D. Tanner, P.-O. Norrby, Organometallics **2004**, 23, 6160.

Allylzinc additions to imines: L. Keinicke, P. Fristrup, P.-O. Norrby, R. Madsen, J. Am. Chem. Soc. 2005, 127, 15756.

Rh-cat. Decarbonylation: P. Fristrup, M. Kreis, A. Palmelund, P.-O. Norrby, R. Madsen J. Am. Chem. Soc. 2008, 130, 5206-5215. Gold-nanoparticle catalyzed oxidations: P. Fristrup, L. B. Johansen, C. H. Christensen, Chem. Commun. 2008, 24, 2750-2752. Iridium-catalyzed alkylation: P. Fristrup, M. Tursky, R. Madsen, Org. Biomol. Chem. 2012, 10, 2569-2577.

A little bit of math

• In a competition experiment the following rate expression exists for substrates (A,B):

 $d[A]/dt = k_A^*[cat]^*[A]$

 $d[B]/dt = k_B^*[cat]^*[B]$

• Division of one with the other gives:

 $d[A]/d[B] = k_A/k_B * [A]/[B]$

• Separation of the variables (A,B) on each side gives:

 $d[A]/[A] = k_A/k_B * d[B]/[B]$

• Integration from initial concentration [A]₀, to actual concentration [A] we get

Competition Experiments

Hammett Plot

DTU

- 0.30 -■ NMe₂ ρ = -0.154 $R^2 = 0.953$ 0.25 0.20 -0.15 ■ SMe $lg(k_X/k_H)$ 0.10 OMe**■ €**Me 0.05 F 0.00 Η CF_{3} -0.05 -0.10 --1.5 -1.0 0.5 -0.5 0.0 -2.0 1.0 σ^{+}
- No radicals involved. Development of a partial positive charge.

• Could be indicative of a β -hydride elimination.

I. S. Makarov, P. Fristrup, R. Madsen, Chem Eur. J. 2012, 18, 15683 – 15692 .

Simplified mechanism of the reaction

Kinetic Isotope Effect

• Due to scrambling the KIE had to be determined as two separate reactions

Dichloride vs. diiodide complex

• The similar rates indicate that *neither* Cl or I stays coordinated and that the active catalyst instead is a dihydride.

Computational method

- Density functional theory (DFT)
- For many years B3LYP but now M06 and/or B3LYP-D3 functional (to get vdW part)
- 6-31G* or 6-31G** basis set
- Effective core potential on transition metals
- Solvation model (important!), Polarized Continuum Model
- We normally use "composite" energies consisting of:
 - Solvation energy (either fully optimized or single-point)
 - Gas phase entropic contributions (since freq-calcs in solvent are slow and error-prone)
- Why does it work so well?
- Cancellation of errors!!, comparison of similar intermediates in a catalytic cycle or even diastereomeric transition states in an enantioselective reaction

DTU

Experimental vs. Theoretical Results

- TOF for trans-dihydride pathway (blue) was 0.74 h⁻¹ (experiment 0.8 h⁻¹)
- TOF for cis-dihydride pathway was 6 orders of magnitude smaller.

AUTOF software: A. Uhe, S. Kozuch, S. Shaik, J. Comput. Chem. 2011, 32, 978–985.

Motivation

- DTU
- Our society is very dependent on fossil fuels, which are the main source of energy, materials and chemicals. A transition to renewable resources is challenging!

• In addition the oil reserves are distributed unevenly (main reserves are in Saudi Arabia, Russia, Venezuela, Canada).

CO₂ emissions, temperature increase

Chemical composition of biomass

Three main fractions:

Chemical building blocks from either oil or biomass

P. N. R. Vennestrøm, C. M. Osmundsen, C. H. Christensen, E. Taarning Angew. Chem. 2011, 50, 10502.

Rhenium-Catalyzed DODH – fundamental steps

[1] Herrmann *Chem. Ber.* **1991**, *124*, 1101. [2] Herrmann *ACIE* **1987**, *26*, 462; [3] Gable *JACS* **1994**, *116*, 833; Gable *JACS* **1995**, *117*, 955; Gable *JACS* **1996**, *118*, 2625; Gable *JACS* **2002**, *124*, 3970.

Catalyst	Reductant	Solvent	Substrate	Ref.
Cp*ReO ₃	PPh ₃	PhCl	styrenediol	[1]
CH ₃ ReO ₃	H ₂	THF	1,2-hexanediol	[2]
Bu ₄ NReO ₄	Na ₂ SO ₃	benzene, THF, CH ₃ CN	various	[3]
Re ₂ (CO) ₁₀	2° alcohol	2° alcohol	aliphatic diols	[4]
CH ₃ ReO ₃	glycerol	glycerol	glycerol	[5]
CH ₃ ReO ₃	2° alcohol	2° alcohol	glycerol, sorbitol	[6]
Cp ^{ttt} ReO ₃	PPh ₃	PhCl	aliph./benz. diols	[7]

[1] Cook and Andrews JACS 1996, 118, 9448.
[5] Abu-Omar *ChemSusChem* 2012, 5, 1401.
[2] Abu-Omar *Inorg. Chem.* 2009, 48, 9998.
[6] Toste ACIE 2012, 51, 8082.
[3] Nicholas *Inorg Chem.* 2010, 49, 4744.
[7] Klein Gebbink *ChemSuschem* 2013, 6, 1673.
[4] Ellman and Bergman JACS 2010, 132, 11408.

Dethlefsen and Fristrup ChemSusChem 2015, 8, 767 (miniteview) 2017

Mechanism of Rhenium-Catalyzed DODH

The order of the Condensation, the Reduction, and the Extrusion

In Situ Spectroscopic Investigation of the Rhenium-Catalyzed III Deoxydehydration of Vicinal Diols

Dethlefsen, J. R. and Fristrup, P. ChemCatChem 2015, 7, 1184-1196

Kinteics of Rhenium-Catalyzed DODH

Dethlefsen, J. R. and Fristrup, P. ChemCatChem 2015, 7, 1184-1196

Additional Mechanistic Details

- CH₃ReO₃ is hydrolyzed to ReO₄⁻
- IR-spectra of intermediates; DFT calculations and 18O-labelling confirm assignment.
- CH₃ReO₂(diolate) and Re(VI) dimer are hidden by other bands.

Summary Rhenium-DODH kinetics

DTU

- Surprising kinetics revealed by in situ spectroscopy:
 - Reversible deactivation of catalyst by substrate.
 - Acceleration (when substrate is nearly consumed)
 - Hydrolysis of CH₃ReO₃ to ReO₄⁻
- Yield and selectivity are good; TOF is low.
- Mechanistic proposal explains all experimental observations and is supported by DFT calculations of the IR spectra of intermediates.

Challenges for sustainable deoxydehydration

Often model substrate (stilbene

diol, long aliphatic diols)

"Terawatt challenge"

- Current global power consumption is 16 TW and fossil fuels contribute 87%.
- Which elements are available in sufficient amounts? Price? Availability? Geopolitics?

Vesborg and Jaramillo, RSC Advances, 2012, 2, 7933–7947.

Simplistic DFT study of alkene extrusion

• Ethylene glycol as the diol, simple oxo or methyl ligands, "usual" oxidation states

For osmium the diolate is favoured, for rhenium the alkene is favoured. MoO₃ initially looks impossible, but simple hydrolysis MoO₂(OH)₂ improves the energetics dramatically.

For technetium, see Pearlstein and Davison, Polyhedron 1988, 7, 1981-1989.

V: Chapman Jr. and Nicholas, Chem. Commun., 2013, 49, 8199

Mo: Dethlefsen, Lupp, Oh, Fristrup ChemSusChiefff 2014, 2,425

Biodiesel – a CO₂ neutral fuel

Global biodiesel production by feedstock

More biodiesel -> more glycerol

Glycerol is a cheap resource!

Conventional Uses:

Cosmetics, personal care Beverages, food Explosives Paper, printing Surface coating, textiles

Emerging uses:

Production of epichlorohydrin Production of propylene glycol Production of glycerol carbonate *All three are chemistry-driven!*

DODH of glycerol to allyl alcohol - Distillation setup

Allycerol – green, biobased allyl alcohol

- Fundamentally different from all existing technologies
- Changes glycerol from "water-like" to "oil-like"
- The reaction works with waste glycerol from enzymatic biodiesel process
- Chemical processes to convert allyl alcohol to large markets with rapid growth (5% annually) acrylic acid (5 mio. tons) and 1,4-butane diol (1.2 mio. tons) are known.

Tentative catalytic cycle

• Experimental results suggests coordination of diol, oxidative cleavage and alkene extrusion as the main steps in the catalytic cycle:

Lupp, Christensen, Dethlefsen, Fristrup Chem. Eur. J. **2015**, 21, 3435-3432.

Oxidative cleavage and alkene extrusion

- TS for oxidative
- TS for alkene ex

Lupp, Christensen, Dethlefsen, Fristrup Chem. Eur. J. 2015, 21, 34352.2017

DTU

Can we avoid diol oxidation?

• Comparison of reductants (diol, hydrogen, iPrOH) using DFT calculations:

New Strategy – avoid diol oxidation

- Catalyst: $(NH_4)_6MO_7O_{24}$.
- Solvent: Cheap and green solvent miscible with carbohydrates (*i*PrOH).
- Reductant: *i*PrOH, oxidized to acetone.
- Substrate: Model compounds and glycerol.

$$B^{1} \xrightarrow{OH} R^{2} + OH \xrightarrow{Mo cat.} R^{1} \xrightarrow{Mag} R^{2} + O + 2 H_{2}O$$

 $OH \xrightarrow{OH} R^{2} + O + 2 H_{2}O$
 $12 h at 250 °C$
Approx. 80 bar

Alkene yield: 77% (from 1,2-hexanediol)

Yield of reduced species: 92% (from 1,2-cyclohexanediol)

Propylene yield: at least 28% (difficult to quantify)

Dethlefsen, Lupp, Teshome, Nielsen, Fristrup ACS Catalysis **2015**, *5*, 3638-3647

Full catalytic cycle

Dethlefsen, Lupp, Teshome, Nielsen, Fristrup ACS Catalysis **2015**, 5, 3638-3647

Deoxygenations of other alcohols

• The DODH reaction requires vicinal diols but biomass also contains "isolated" alcohols, for instance phenols or allylic alcohols in lignin or the hydroxymethyl group in HMF

DTU

Deoxygenation of activated alcohols

• Allyl alcohol and benzyl alcohol can be deoxygenated:

• In neat conditions dimerization is also observed for benzyl alcohol:

Even in *i*PrOH Benzyl alcohol disproportionates

• BnOH is a better reductant than iPrOH.

Hammett study

• Carried out as competition studies:

For earlier Hammett studies, see: JACS **2005***, 127, 15756; JACS* **2008***, 130, 5206; Chem. Eur. J.* **2012***, 18, 15683; Catal. Today* **2013***, 203, 211; Org. Biomol. Chem.* **2012***, 10, 2569; ACS Catal.* **2013***, 3, 294.*

Hammett plot

Not linear for any set of σ-values (σ, σ⁺, σ[•]):

D. B. Larsen, A. R. Petersen, J. R. Dethlefsen, A. Teshome, P. Fristrup *Chem. Eur. J.* **2016**, *22*, 16621-16631.

DFT studies

D. B. Larsen, A. R. Petersen, J. R. Dethlefsen, A. Teshome, P. Fristrup *Chem. Eur. J.* **2016**, *22*, 16621-16631.

Fristrup ISOC 2017

Mechanism for generation of π -benzyl molybdenum complex

Reductive elimination of toluene

TS [8-9].

Overall energy profile

• Exergonic by 37 kcal/mol

• Largest barrier (7 -> 7-8) is 31 kcal/mol and the energetic span (7 -> 8-9) 51 kcal/mol.

Comparison of exp. vs. theoretical rates

• Correlation of calculated, relative TOF values with relative reactivities determined in the competition experiments (Hammett study).

Dalton Trans. **2014**, *43*, 11093. *Synlett* **2015**, *26*, 508.

Conclusions

- Molybdenum-catalyzed DODH has been developed:
 - 1st generation process: diol is used as reductant
 - 2nd generation process: iPrOH as both solvent and reductant
 - DFT calculations were crucial in understanding the reactivity

- Mechanistic study of Molybdenum-catalyzed transfer-HDO protocol
 - Overall good agreement between exp. and theoretical rates

Acknowledgements

Johannes R. Dethlefsen Niels J. Christensen

Allan R. Petersen

Ayele T. Gorfo

Daniel Lupp

Lasse Bo Nielsen Søren Tolborg

Rita Coláco

Giuseppe Antonacci

Daniel Bo Larsen

THANK YOU FOR THE ATTENTION!

DTU Chemistry Department of Chemistry

